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Abstract 
 
   We show how to construct nonparametric tests for two factor designs. These tests depend on whether or not 
the levels of the factors are ordered. Pearson’s X2 statistic is decomposed into components of orders 1, 2, ... . 
These components may be further decomposed, the decomposition depending on the design. If neither factor is 
ordered, the components reflect linear, quadratic etc main and interaction effects. The approach is 
demonstrated with reference to the latin squares design. 
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1. Introduction 
 
  The approach described here is based on 
components of the test statistic of the Pearson X2 test 
of independence. The first order component utilises 
ranks. Tests are available of higher order 
components, which can be thought of as being based 
on generalised ranks. 
  In a limited empirical assessment for the latin 
square design we find that our first order (rank-
based) test consistently gives superior power to the 
parametric F test and our benchmark nonparametric 
test, the Conover rank transform test (see [3, p.419]). 
  The approach generalises readily to the 
development of multifactor nonparametric tests.  
  In section 2 we construct contingency tables and 
show how Pearson’s X2 statistic  may be 
partitioned into components that reflect, for 
example, linear, quadratic and other effects. The 
components depend on how many factors have 
ordered levels. In section 3 we consider no factors 
ordered, and in section 4 at least one factor ordered. 
Section 5 gives a brief empirical assessment for the 
latin squares design. 
 
 
2. Decomposition of the Pearson Statistic into 
Linear, Quadratic and Other Effects  
 
  We assume that we have observations xij, i = 1, ..., I 
and j = 1, ..., J, in which i and j are the levels of 

factors A and B respectively. All IJ = n observations 
are ranked and we count Nrij, the number of times 
rank r is assigned to the observation at level i of 
factor A and level j of factor B. For simplicity we 
assume throughout that there are no ties. 
 
2.1 Singly Ordered Tables: Neither Factor Ordered  
  Initially it is assumed that only the ranks are 
ordered. With no ties {Nrij} defines a three-way 
singly ordered table of counts of zeros and ones. As 
in [2] and [4, section 10.2], Pearson’s X2 statistic 

 may be partitioned into components Zuij via 
 

 =  

 

with Zuij = , in which 

{au(r)} is an orthonormal polynomial on {pr..} with 
a0(r) = 1 for r = 1, ..., n. Here the standard dot 
notation has been used, so that, for example, N...= IJ 
= n, the number of times a rank has been assigned. 
Formally  also includes a term for Pearson’s X2 
for the unordered table formed by summing over r: 
{N.ij}. However this table has every entry one, and 
X2 is zero. We also find that N.i. = J and N..j = I. It 
follows that p.i. = 1/I and p.j = 1/J, giving Zuij = 

. 
  For u = 1, 2, ..., n – 1 define  
 

Proceedings of the Fourth Annual ASEARC Conference 19

February 17-18, 2011, Parramatta, Australia



 

SSu =  

 

so that  = SS1 + ... + ; the SSu give order u 
assessments of factor effects. 
  The {Zuij} may be thought of as akin to Fourier 
coefficients: for each (i, j) pair Zuij is the projection 
of xij into [n – 1] dimensional ‘order’ space, where 
the first dimension reflects, roughly, location, and 
the second reflects, roughly, dispersion, and so. Now 
Z1ij =  in which µ = (n + 1)/2 
and σ2 = (n2 – 1)/12. The linear or location statistic 
is SS1 = . As in [4, section 3.4] this is of the 

form of a Kruskal-Wallis test. 
 
2.2 Doubly Ordered Tables: One Factor Ordered 
  Now assume that the first factor is ordered. To 
reflect this change write Nrsj for the number of times 
rank r is assigned to the factor combination (s, i). As 
there are no ties {Nrsj} defines a three-way doubly 
ordered table of counts of zeros and ones. As in [2] 
and [4, section 10.2], Pearson’s X2 statistic  may 
be partitioned into components Zuvj via 
 

 =  +  +  

 

with Zuvj = , in 

which {au(r)} is orthonormal on {pr..} with a0(r) = 1 
for r = 1, ..., n and {bv(s)} is orthonormal on {p.i.} 
with b0(s) = 1 for s = 1, ..., I. We find that N...= n, pr.. 
= 1/n, p.i. = 1/I and p.j = 1/J, giving Zuvj = 

. If for u = 0, 1, 2, ..., 
n – 1 and v = 0, 1, ..., I – 1, but not (u, v) = (0, 0), 
SSuv = , we have  = . 
  Analogous to [4, section 6.5] the Z11j are Page test 
statistics at each of the levels of factor B, and the Zuvj 
are extensions of Page’s test statistic. Now SSuv = 

 gives an aggregate assessment over the 
whole table of order (u, v) effects, generalised 
correlations in the sense of [5]. As above, the 
aggregation of all these order (u, v) effects is . 
 
2.3 Completely Ordered Tables: Both Factors 
Ordered 
  Finally assume that both factors are ordered. To 
reflect this change write Nrst for the number of times 
rank r is assigned to the factor combination (s, t). 
With no ties {Nrst} defines a three-way completely 

ordered table of counts of zeros and ones. As in [1] 
and [4, section 10.2], Pearson’s X2 statistic  may 
be partitioned into components Zuvw via 
 

 =  +   

+  +  

 

with Zuvw √n = , 
in which {au(r)} is orthonormal on {pr..} with a0(r) = 
1 for r = 1, ..., n, {bv(s)} is orthonormal on {p.s.} 
with b0(s) = 1 for s = 1, ..., I and {cw(t)} is 
orthonormal on {p..t} with c0(t) = 1 for t = 1, ..., J.  
  In our previous notation SSuvw =  for u = 0, 1, 
2, ..., n – 1 and v = 0, 1, ..., I – 1, and w = 0, 1, ..., J – 
1, but not (u, v, w) = (0, 0, 0). Thus  = 

. The SSuvw may be thought of as further 
extensions of the Page test statistic, this time to three 
dimensions. The SSuv0, SSu0w and SS0vw are the 
familiar two-dimensional generalised Page test 
statistics as, for example, in [4, section 6.5 and 
Chapter 8]. 
 
 
3. Factors Not Ordered 
 
  Recall now that in the two factor analysis of 
variance without replication with observations yij, i = 
1, ..., I and j = 1, ..., J, the total sum of squares SSTotal 
=  may be arithmetically partitioned 
into sum of squares due to factor A, namely SSA = 

, due to factor B, namely SSB = 

, and a residual or interaction sum 

of squares SSAB = . Thus  
 

SSTotal = SSA + SSB + SSAB. 
 

Here  =  and  = /J etc as usual. 
  For each u = 1, 2, ..., n – 1 put yij = Zuij = 

 in SSTotal. The order u factor A 

sum of squares is SSuA = . 
As in [4, section 3.4], SS1A is the Kruskal-Wallis 
test statistic for factor A, and for general u the 
SSuA are the component test statistics discussed 
there. Clearly the SSuB are the parallel 
generalised Kruskal-Wallis test statistics for 
factor B, while the SSuAB are nonparametric tests 
for generalised interaction effects. For example, 
for u = 2, SS2AB assesses whether or not the 
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quadratic (dispersion) factor A effects are the 
same at different levels of factor B.  
 
Examples. 
  The completely randomised design can be accessed 
either by calculating the SSuA directly or by 
partitioning the {Zuij} as in the one factor ANOVA. 
However it is done, the usual Kruskal-Wallis test 
statistic and its extensions are obtained. 
  In the randomised block design factor A can be 
taken to be treatments and factor B blocks. Of 
course there is no interest in testing for a block 
effect or a treatment by block interaction effect. The 
treatment effect test is not the Friedman test, as 
observations are ranked overall, not merely on each 
block. From an overall ranking the ranks on each 
block may be derived, so there is more information 
assumed in this approach. This could result in more 
power when the test is applicable. In some situations 
only ranks within blocks are available. 
 
 
4. At least One Factor Ordered 
 
  Suppose now that the first factor is ordered. The 
Zuvj = , are generalised 
Page test statistics at each level of factor B. As in the 
Happiness example in [4, p. 147 and p. 188],  
may be partitioned into meaningful components. An 
alternative is to sum over the levels of factor B and 
obtain Zuv., generalised Page test statistics 
aggregating over factor B. This is appropriate when 
factor B is replicates, as in the completely 
randomised design, or blocks, as in the randomised 
block design 
  If both factors are ordered  is partitioned by the 
SSuvw of section 2.3. These are new extensions of the 
Page test, this time to three dimensions. 
 
 
5. Latin Squares 
 
  The parametric analysis of the t × t latin square 
design partitions the total sum of squares into sum of 
squares of treatments, rows and columns and error. 
For the nonparametric analysis we assume that 
neither rows nor columns are ordered and investigate 
parallel partitions of the total sum of squares. 
  We count Nrjk, the number of times rank r is 
assigned to the treatment in row j and column k, with 
r = 1, … , t2, j, k = 1, … , t. Note that treatment i, i = 
1, … , t, occurs in cells (j, k) specified by the design. 
As long as we know any two of the treatment, row 
and column, we know the other. Hence a latin square 

may be considered to be any of three two factor 
designs. This observation is utilised subsequently. 
  Throughout this section we assume that treatments 
are unordered, and that only the ranks are ordered. 
With no ties {Nrjk} defines a three way singly 
ordered table of counts of zeroes and ones.  
  As in section 2,  = SS1 + ... +  in which  
 

SSu =  for all u  

with Zujk = . 
 

The factor A test statistic of order u = 1, ..., t2 – 1, 
can be denoted by SSuA, a generalised Kruskal-
Wallis test statistic. By letting the factors be in turn 
rows and columns, columns and treatments, and 
treatments and rows, we are able to show that  
 

3 SSu = 2 SSutreatments + 2 SSurows + 2 SSucolumns 
+ SSutreatments×rows + SSutreatments×columns + SSurows×columns. 
 

In most applications it is enough to know that SSu = 
SSutreatments + residual, but it is interesting to know 
that, parallel to the parametric partition, the residual 
could be used to assess rows and columns, and 
interactions between treatments, rows and columns. 
However, unlike the parametric case, this analysis 
applies for any order. We recognise that in most 
applications few users would be interested in 
treatment effects beyond orders two or three. 
 
Empirical Study 
  We now briefly assess the power properties of 
some of the tests constructed. Treatments tests of 
orders one and two, with test statistics denoted by 
SS1T and SS2T respectively, are considered. We also 
consider tests formed from the table of counts {Nrsi} 
where the second category is treatments, assumed to 
be ordered. Then test statistics Suv are constructed 
from {Nrs.}, particularly the Page test based on S11 
and the umbrella test based on S21. These will be 
compared with the parametric F test (denoted by F) 
and the Conover rank transform test (denoted by 
CRT) that ranks the data and applies a parametric F 
test to the ranks.  
  Only the 5 × 5 Latin square is considered, and 
rather than use asymptotic critical values 5% critical 
values are found using random permutations. The 
critical value for SS1T is 8.9059 while that for the 
CRT test was 3.3642. Compare these with the 
asymptotic critical values of 9.4877 using the  
distribution for the SS1T test and 3.2592 using the 
F4,12 distribution for the CRT test. Not surprisingly 
these asymptotic critical values aren’t practical for a 
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table of this size. However the critical value for the 
parametric F test is exact. 
 
 
Table 5. Test sizes for competitor tests for various 
error distributions.  
Error distn CRT SS1T F SS2T S11 S21 

Normal 0.050 0.049 0.050 0.050 0.051 0.049 
Expon 0.050 0.050 0.040 0.049 0.050 0.051 
U(0, 1) 0.052 0.052 0.055 0.049 0.052 0.051 

Cauchy (t1) 0.049 0.049 0.017 0.050 0.051 0.051 
t2 0.049 0.050 0.031 0.050 0.052 0.051 
t3 0.050 0.050 0.041 0.050 0.051 0.051 

Lognormal 0.049 0.049 0.032 0.049 0.052 0.050 
 
 
Table 6. Powers for competitor tests for various 
error distributions with linear alternatives αi = (–1, –
0.5, 0, 0.5, 1). 
Error distn CRT SS1T F SS2T S11 S21 

Normal 0.62 0.69 0.64 0.07 0.91 0.02 
Expon 0.78 0.83 0.68 0.22 0.96 0.01 

Cauchy (t1) 0.19 0.22 0.05 0.07 0.40 0.04 
t2 0.32 0.37 0.20 0.07 0.62 0.03 
t3 0.40 0.45 0.32 0.06 0.72 0.02 

Lognormal 0.54 0.59 0.29 0.22 0.84 0.02 
 
 
Table 7. Powers for competitor tests for various 
error distributions with quadratic alternatives αi = (1, 
0, –2, 0, 1).  
Error distn CRT SS1T F SS2T S11 S21 

Normal 0.94 0.97 0.96 0.34 0.01 0.98 
Expon 0.93 0.95 0.94 0.48 0.01 0.99 

Cauchy (t1) 0.34 0.38 0.10 0.11 0.03 0.52 
t2 0.59 0.66 0.44 0.16 0.03 0.77 
t3 0.71 0.78 0.65 0.19 0.02 0.86 

Lognormal 0.74 0.78 0.57 0.43 0.01 0.91 
 
 
Table 8. Powers for competitor tests for various 
error distributions with complex alternatives αi = 
(0.5, –0.5, 0, 0.5, –0.5). 
Error distn CRT SS1T F SS2T S11 S21 

Normal 0.27 0.31 0.28 0.04 0.07 0.04 
Expon 0.46 0.52 0.33 0.11 0.09 0.03 

Cauchy (t1) 0.11 0.12 0.03 0.05 0.06 0.05 
t2 0.16 0.17 0.09 0.05 0.07 0.05 
t3 0.18 0.21 0.14 0.05 0.07 0.05 

Lognormal 0.30 0.34 0.13 0.15 0.08 0.03 
 
  All simulations relate to 5% level tests with sample 
sizes of 25, and are based on 100,000 simulations. 
The error distributions are Normal, exponential, 
uniform (0, 1), Cauchy (t1), t2, t3 and lognormal. 

  Using the simulated critical values we found the 
test sizes given in Table 5. They are remarkably 
close to the nominal significance level, as befits 
nonparametric tests. However the parametric F test 
fared less well, often having test size less than 5%. 
This will mean the corresponding powers will be 
less than if the nominal level was achieved. 
Nevertheless, this is how the test would be applied 
in practice. 
  The critical values used in Table 5 were also used 
to estimate powers in subsequent tables. These 
powers use the model Yijk = µ + αi + βj + γk + Eijk but 
with βj = γk = 0 for all j and k in this study. The 
uniform error distribution doesn’t appear in Tables 6 
to 8 as all powers are 1.00. 
  Even when normality holds, the test based on SS1T 
is, for the alternatives considered, slightly superior 
to the parametric F test, and clearly superior when 
normality doesn’t hold. This linear effects test is also 
uniformly slightly superior to the Conover rank 
transform test. This is not due to a size difference as 
can be seen from Table 5. The Page and umbrella 
tests perform well when the alternative is 
constructed to reflect their designed strengths, but 
both are sometimes biased: their power is less than 
their test size. The performance of the test based on 
SS2T is disappointing, perhaps because powers have 
not been given for alternatives constructed to reflect 
their designed strengths. 
 
 
References 
 
[1] Beh, E. J. and Davy, P. J. (1998). Partitioning 

Pearson's chi-squared statistic for a completely 
ordered three-way contingency table. Australian and 
NZ Journal of Statistics, 40, 465-477. 

[2] Beh, E. J. and Davy, P. J. (1999). Partitioning 
Pearson's chi-squared statistic for a partially ordered 
three-way contingency table. Australian and NZ 
Journal of Statistics, 41, 233-246. 

[3] Conover, W.J. (1998). Practical Nonparametric 
Statistics (3rd ed.). New York: Wiley. 

[4] Rayner, J.C.W. and Best, D.J. (2001). A Contingency 
Table Approach to Nonparametric Testing. Boca 
Raton: Chapman & Hall/CRC. 

[5] Rayner, J.C.W. and Beh, Eric J. (2009). Towards a 
Better Understanding of Correlation. Statistica 
Neerlandica. 63(3), 324-333. 

22 Proceedings of the Fourth Annual ASEARC Conference

February 17-18, 2011, Parramatta, Australia


